(本题满分14分) 已知数列中的相邻两项是关于的方程的两个根,且.(Ⅰ)求,,,及(不必证明);(Ⅱ)求数列的前项和.
已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域。(用a表示)
函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)将的图像向左平移个单位,再将得到的图像横坐标变为原来的2倍(纵坐标不变)后得到的图像,若的图像与直线交点的横坐标由小到大依次是求数列的前2n项的和。
如图,平面四边形ABCD中,AB=13,AC=10, AD=5,,.(Ⅰ);(Ⅱ)设,求x、y的值。
已知曲线:.(Ⅰ)当时,求曲线的斜率为1的切线方程;(Ⅱ)设斜率为的两条直线与曲线相切于两点,求证:中点在曲线上;(Ⅲ)在(Ⅱ)的条件下,又已知直线的方程为:,求的值.
已知圆锥曲线的两个焦点坐标是,且离心率为;(Ⅰ)求曲线的方程;(Ⅱ)设曲线表示曲线的轴左边部分,若直线与曲线相交于两点,求的取值范围;(Ⅲ)在条件(Ⅱ)下,如果,且曲线上存在点,使,求的值.