某百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?
如图1,在△ABC中,AB=AC,点D,E分别在AB和AC上,且∠ADC=∠AEB=90°,则CD=BE.探究发现:如图2,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?若相等,请证明;若不相等,请举反例说明.
如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8). (1)请在4×8的网格纸图2中画出t为6秒时的线段PQ并求其长度; (2)当t为多少时,△PQB是以BP为底的等腰三角形.
如图,△ABC中,BE⊥AC,CF⊥AB,垂足分别为E、F,M为BC的中点. (1)求证:ME=MF. (2)若∠A=50°,求∠FME的度数.
如图,△ABC中,∠C=90°. (1)在BC边上作一点P,使得点P到点C的距离与点P到边AB的距离相等(尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若AC=4,BC=3,求CP的长.
数学家鲁弗斯设计了一个仪器,它可以三等分一个角.如图所示,A、B、C、D分别固定在以O为公共端点的四根木条上,且OA=OB=OC=OD,E、F可以在中间的两根木条上滑动,AE=CE=BF=DF.求证:∠AOE=∠EOF=∠FOD.