如图,将连续的奇数1、3、5、7 …… ,排列成如下的数表,用十字框框出5个数。问:(1)十字框框出5个数字的和与框子正中间的数31有什么关系?(2)若将十字框上下左右平移,可框住另外5个数,若设中间的数为a,用代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数字之和能等于2000吗?若能,分别写出十字框框住的5个数;若不能,请说明理由。
已知:在△AOB与△COD中,OA=OB,OC=OD,. (1)如图1,点C、D分别在边OA、OB上,连结AD、BC,点M为线段BC的中点,连结OM,则线段AD与OM之间的数量关系是,位置关系是; (2)如图2,将图1中的△COD绕点逆时针旋转,旋转角为().连结AD、BC,点M为线段BC的中点,连结OM.请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由; (3)如图3,将图1中的 △COD绕点 O逆时针旋转到使 △COD的一边OD恰好与△AOB的边OA在同一条直线上时,点C落在OB上,点M为线段BC的中点. 请你判断(1)中线段AD与OM之间的数量关系是否发生变化,写出你的猜想,并加以证明.
在平面直角坐标系xOy中,抛物线经过原点O, 点B(-2,n)在这条抛物线上. (1)求抛物线的解析式; (2)将直线沿y轴向下平移b个单位后得到直线l, 若直线l经过B点,求n、b的值; (3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.
如图1,矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.在图2、图3中,四边形ABCD为矩形,且,. (1)在图2、图3中,点E、F分别在BC、CD边上,图2中的四边形EFGH是利用正方形网格在图上画出的矩形ABCD的反射四边形.请你利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH; (2)图2、图3中矩形ABCD的反射四边形EFGH的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的周长各是多少; (3)图2、图3中矩形ABCD的反射四边形EFGH的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的面积各是多少.
某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表. 表1阅读课外书籍人数分组统计表
请你根据以上信息解答下列问题: (1)这次共调查了学生多少人?E组人数在这次调查中所占的百分比是多少? (2)求出表1中a的值,并补全图1; (3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人.
如图,AB是⊙O的直径,C是AB延长线上一点,点D在⊙O上,且∠A=30°,∠ABD=2∠BDC . (1)求证:CD是⊙O的切线; (2)过点O作OF∥AD,分别交BD、CD于点E、F.若OB =2,求 OE和CF的长.