(本小题满分12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.,陈老师采用两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率直方图(如下图).记成绩不低于90分者为“成绩优秀”. (I)从乙班随机抽取2名学生的成绩,记“成绩优秀”的人数为,求的分布列和数学期望;(II)根据频率分布直方图填写下面列联表,并判断是否有的把握认为:“成绩优秀”与教学方式有关.
如图3,三棱锥中,,.(1)求证:平面;(2)若为线段上的点,设,问为何值时,能使直线平面?(3)求二面角的平面角的余弦值 图3
随着旅游事业的发展,我县花亭湖景区近几年得到了很好的开发,同时也受到了污染. 花亭湖水的容量为V立方米,每天流入湖的水量等于流出湖的水量.现假设下雨和蒸发平衡,且污染物和湖水均匀混合.用表示某一时刻一立方米湖水中所含污染物的克数(我们称其为“湖水污染质量分数”),表示湖水污染初始质量分数.(1)当湖水污染质量分数为常数时,求湖水污染初始质量分数;(2)分析时,湖水的污染程度如何?
设函数的定义域为D,此函数图象上所有的点组成的集合为. 若存在∈D,使成立,则称是集合的一个不动点.(1)已知集合有两个不动点和,求的值;(2)若集合没有不动点,求实数的取值范围.
设函数对一切实数都有成立,且=0,.曲线的参数方程是((1)求实数的值和曲线的普通方程;(2)若直线被曲线截得的弦长为4,求的最小值.
已知△ABC中角A、B、C所对边分别是a、b、c,设向量=(a,b),=(sinB,sinA),=(b-2,a-2)(1)若//,求证:△ABC为等腰三角形(2)若⊥,边长c="2" ,∠C=,求△ABC的面积