(本小题8分) 如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,若F,E分别为PC,BD的中点,求证:(l)EF∥平面PAD;(2)平面PDC⊥平面PAD
某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.
在直角坐标系中,A (3,0),B (0,3),C (1)若^,求的值; (2)与能否共线?说明理由。
设函数是定义在区间上的偶函数,且满足 (1)求函数的周期; (2)已知当时,.求使方程在上有两个不相等实根的的取值集合M. (3)记,表示使方程在上有两个不相等实根的的取值集合,求集合.
在平面直角坐标系中,已知圆心在轴上、半径为的圆位于轴右侧,且与直线相切. (1)求圆的方程; (2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
如图,在长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,E为AB的中点,F为CC1的中点. (1)证明:B F//平面E CD1 (2)求二面角D1—EC—D的余弦值.