甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.(Ⅰ)求选出的4名选手均为男选手的概率.(Ⅱ)记为选出的4名选手中女选手的人数,求的分布列和期望.
一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,. (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率; (2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知中,三条边所对的角分别为、、,且. (1)求角的大小; (2)若,求的最大值.
已知函数. (1)若曲线在和处的切线相互平行,求的值; (2)试讨论的单调性; (3)设,对任意的,均存在,使得.试求实数的取值范围.
已知点直线,为平面上的动点,过点作直线的垂线,垂足为,且. (1)求动点的轨迹方程; (2)、是轨迹上异于坐标原点的不同两点,轨迹在点、处的切线分别为、,且,、相交于点,求点的纵坐标.
设数列的前项和为,且. (1)求数列的通项公式; (2)设,求证:.