如图,四棱锥中,平面,底面是直角梯形,⊥,⊥,,为中点. (1) 求证:平面PDC平面PAD; (2) 求证:BE∥平面PAD;(3)求二面角的余弦值.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是:.(1)求图中的值并根据频率分布直方图估计这500名志愿者中年龄在岁的人数;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人,记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.
选修4—4:极坐标与参数方程已知圆的极坐标方程为:.(1)将极坐标方程化为普通方程;(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
选修4—2:矩阵与变换已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2= .求矩阵A,并写出A的逆矩阵.
(本小题满分16分)已知数列,其前项和为.(1)若是公差为的等差数列,且也是公差为的等差数列,求数列的通项公式;(2)若数列对任意,且,都有,求证:数列是等差数列.
(本小题满分16分)已知函数,,且.(1)当时,求函数的减区间;(2)求证:方程有两个不相等的实数根;(3)若方程的两个实数根是,试比较,与的大小,并说明理由.