(本小题满分10分)选修4-1:几何证明选讲.如图,在中,是的角平分线,的外接圆交于点,.(Ⅰ)求证:;(Ⅱ)当时,求的长.
(本小题满分12分) 设不等式组表示的平面区域为,区域内的动点到直线和直线的距离之积为2, 记点的轨迹为曲线. 是否存在过点的直线l, 使之与曲线交于相异两点、,且以线段为直径的圆与y轴相切?若存在,求出直线l的斜率;若不存在, 说明理由.
(本小题满分12分) 如图,在四棱锥中,底面,,, 是的中点.(1)证明;(2)证明平面;(3)求二面角的大小.
(本小题满分12分) 已知函数(R,且)的部分图象如图所示. (1) 求的值; (2) 若方程 在内有两个不同的解,求实数m的取值范围.
(本题满分12分) 在九江市教研室组织的一次优秀青年教师联谊活动中,有一个有奖竞猜的环节.主持人准备了A、B两个相互独立的问题,并且宣布:幸运观众答对问题A可获奖金1000元,答对问题B可获奖金2000元,先答哪个题由观众自由选择,但只有第一个问题答对,才能再答第二题,否则终止答题.若你被选为幸运观众,且假设你答对问题A、B的概率分别为、.(1) 记先回答问题A的奖金为随机变量, 则的取值分别是多少?(2) 你觉得应先回答哪个问题才能使你获得更多的奖金?请说明理由.
设an是正数组成的数列;其前n项和为Sn,且对所有的自然数n,an与2的等差中项等于Sn与2的等比中项,求数列{an}的通项公式。