已知函数,其中.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求函数的单调区间与极值.
(本小题满分14分)设函数(e=2.718 28 是自然对数的底数).(1)当时,求在点处的切线方程;(2)判断的单调性; (3)证明:当(1,+∞)时,.
(本小题满分12分)如图,椭圆的焦点在轴上,左右顶点分别为,上顶点为,抛物线分别以、为焦点,其顶点均为坐标原点,与相交于直线上一点.(1)求椭圆及抛物线的方程;(2)若动直线与直线垂直,且与椭圆交于不同的两点,已知点,求的最小值.
(本小题共12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.(1)当点E为BC的中点时, 证明EF//平面PAC;(2)求三棱锥E-PAD的体积;(3)证明:无论点E在边BC的何处,都有PEAF.
(本小题满分12分)设数列的前项和为,点均在函数的图象上.(1)求数列的通项公式;(2)若为正项等比数列,且,,求数列的前n项和.
(本小题满分12分)在中, 分别是角的对边,且.(1)求的大小; (2)若,,求的面积.