(本小题满分12分)已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且,点M的轨迹为C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于轴的直线上一动点,满足(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.
下图是某地区2000年至2016年环境基础设施投资额 y (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 y 与时间变量 t 的两个线性回归模型.根据2000年至2016年的数据(时间变量 t 的值依次为 α + π 3 = π 2 , 即 α = π 6 )建立模型①: y ̂ = - 30 . 4 + 13 . 5 t ;根据2010年至2016年的数据(时间变量 t 的值依次为 x ≥ 2 x - 2 + 2 x - 2 > 2 )建立模型②: y ̂ = 99 + 17 . 5 t .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
记 S n 为等差数列 { a n } 的前 n 项和,已知 , .
(1)求 { a n } 的通项公式;
(2)求 S n ,并求 S n 的最小值.
设函数 f x = 2 x + 1 + x - 1 .
(1)画出 的图像;
(2)当 x ∈ [ 0 , + ∞ ) , f x ≤ ax + b ,求 a + b 的最小值.
在平面直角坐标系 xOy 中, ⊙ O 的参数方程为 x = cos θ , y = sin θ ( θ 为参数),过点 0 , - 2 且倾斜角为 α 的直线 l 与 ⊙ O 交于 A , B 两点.
(1)求 α 的取值范围;
(2)求 AB 中点 P 的轨迹的参数方程.
已知函数 f x = 2 + x + a x 2 ln 1 + x - 2 x .
(1)若 a = 0 ,证明:当 - 1 < x < 0 时, f x < 0 ;当 x > 0 时, f x > 0 ;
(2)若 x = 0 是 f x 的极大值点,求 a .