(本小题满分12分)已知数列{}满足,且点在函数的图象上,其中=1,2,3,….(Ⅰ)证明:数列{lg(1+)}是等比数列;(Ⅱ)设=(1+)(1+)…(1+),求及数列{}的通项.
已知函数,∈R. (I)讨论函数的单调性; (2)当时,≤恒成立,求的取值范围.
已知圆C:,点,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E。 (1)求E的方程; (2)设P为直线x = 4上不同于点(4,0)的任意一点,D,F分别为曲线E与x轴的左,右两交点,若直线DP与曲线E相交于异于D的点N,证明ΔNPF为钝角三角形.
如图,在直三棱柱ABC—A1B1C1中,. (1)若D为AA1中点,求证:平面B1CD平面B1C1D; (2)若二面角B1—DC—C1的大小为60°,求AD的长.
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表:
若用样本估计总计,以上表频率为概率,且每天的销售量相互独立: (1)求5天中该种商品恰好有2天的日销售量为1.5吨的概率; (2)已知每吨该商品的销售利润为2千元,表示该种商品两天销售利润的和(单位:千元),求的分布列和数学期望.
在中,内角A, B, C的对边分别为,已知。 (1)求的值; (2)若,的周长为5, 求b的长度.