(本小题满分14分)设函数,函数g(x)=分别在x=m和x=n处取得极值,且m<n(1)求的值(2)求证:f(x)在区间[m,n]上是增函数(3)设f(x)在区间[m,n]上的最大值和最小值分别为M和N,试问当实数a为何值时,M-N取得最小值?并求出这个最小值
已知,其中,如果A∩B=B,求实数的取值范围.
已知命题:不等式的解集为R,命题:是上的增函数,若或为真命题,且为假命题,求实数的取值范围.
已知函数. (Ⅰ)求使不等式成立的的取值范围; (Ⅱ),,求实数的取值范围.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点(-2,-4)的直线的参数方程为(为参数),直线与曲线相交于两点. (Ⅰ)写出曲线的直角坐标方程和直线的普通方程; (Ⅱ)若,求的值.
如图,直线为圆的切线,切点为,直径,连接交于点. (Ⅰ)证明:; (Ⅱ)求证:.