(本小题满分12分)已知3名志愿者在10月1号至10月5号期间参加2011年国庆节志愿者活动工作.(1)若每名志愿者在5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志原者恰好连续3天参加社区服务工作的概率;(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记表示这3名志愿者在10月1号参加志愿者服务工作的人数,求随机变量的数学期望.
右图为一简单组合体,其底面ABCD为正方形,平面,,且="2" . (1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框 内画出该几何体的正(主)视图和侧(左)视图; (2)求四棱锥B-CEPD的体积; (3)求证:平面.
已知复数,,且. (1)若且,求的值; (2)设=,求的最小正周期和单调减区间.
(本小题满分10分) 选修4-5:不等式选讲 设函数,. (1)解不等式:; (2)若的定义域为,求实数的取值范围.
(本小题满分10分) 选修4-4:坐标系与参数方程选讲 已知曲线的参数方程为(为参数),曲线的参数方程为(为参数). (1)若将曲线与上各点的横坐标都缩短为原来的一半,分别得到曲线和,求出曲线和的普通方程; (2)以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,求过极点且与垂直的直线的极坐标方程.
(本小题满分10分) 选修4-1:几何证明选讲 如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,且交于点,交于点. (1)求的度数; (2)若,求.