.(本小题满分12分)已知数列满足:,,.计算得,.(1)猜想的通项公式,并用数学归纳法加以证明;(2)用反证法证明数列中不存在成等差数列的三项.
(本小题满分14分)已知函数(为实数).(I)若在处有极值,求的值;(II)若在上是增函数,求的取值范围.
(本小题满分14分)已知:为常数) (1)若,求的最小正周期;(2)若在[上最大值与最小值之和为5,求的值;(3)在(2)条件下先按平移后再经过伸缩变换后得到求.
(矩阵与变换)二阶矩阵M对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(Ⅰ) 求矩阵M; (Ⅱ) 设直线l在变换M作用下得到了直线m:x-y=4,求l的方程.
(本小题满分10分)如图A,B两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(1)设选取的三条网线由A到B可通过的信息总量为时,则保证信息畅通.求线路信息畅通的概率;(2)求选取的三条网线可通过信息总量的数学期望.
(本小题满分16分)已知正三角形OAB的三个顶点都在抛物线上,其中O为坐标原点,设圆C是的外接圆(点C为圆心)(1)求圆C的方程;(2)设圆M的方程为,过圆M上任意一点P分别作圆C的两条切线PE、PF,切点为E、F,求的最大值和最小值