设为数列的前项和,对任意的,都有为常数,且.(1)求证:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)在满足(2)的条件下,求数列的前项和.
已知函数在与处都取得极值。 (1)求函数的解析式; (2)求函数在区间[-2,2]的最大值与最小值
已知点M与两个定点O(0,0),A(3,0)的距离的比为求点M的轨迹方程。
图中是抛物线型拱桥,当水面在时,拱顶离水面2米,水面宽4米,(1)建立如下图所示的直角坐标系,求抛物线的解析式。(2)水面下降1米后,水面宽是多少?
12分)已知函数y=xlnx(1)求这个函数的导数;(2)求这个函数的图象在x=1点处的切线方程
如图,是双曲线的两个焦点,O为坐标原点,圆是以为直径的圆,直线:与圆O相切,并与双曲线交于A、B两点.(Ⅰ)根据条件求出b和k的关系式;(Ⅱ)当时,求直线的方程;(Ⅲ)当,且满足时,求面积的取值范围.