先化简,再求值:,其中
为了丰富学生的文化生活,学校利用假期组织学生到红色文化基地 A 和人工智能科技馆 C 参观学习如图,学校在点 B 处, A 位于学校的东北方向, C 位于学校南偏东 30 ° 方向, C 在 A 的南偏西 15 ° 方向 ( 30 + 30 3 ) km 处.学生分成两组,第一组前往 A 地,第二组前往 C 地,两组同学同时从学校出发,第一组乘客车,速度是 40 km / h ,第二组乘公交车,速度是 30 km / h ,两组同学到达目的地分别用了多长时间?哪组同学先到达目的地?请说明理由(结果保留根号).
某校准备组建"校园安全宣传队",每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班"校园安全宣传员"人选.
(1)用画树状图或列表法,写出"王老师从袋中随机摸出两个小球"可能出现的所有结果.
(2)求甲同学被选中的概率.
由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式: A 网上自测, B 网上阅读, C 网上答疑, D 网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1)本次共调查了 名学生;
(2)在扇形统计图中, m 的值是 , D 对应的扇形圆心角的度数是 ;
(3)请补全条形统计图;
(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式 D 的学生人数.
先化简,再求值: ( x - 1 x + 1 + 1 ) ÷ x 3 - 2 x 2 + x x 2 - 1 ,其中 x = 3 + 1 .
在平面直角坐标系中,抛物线 y = a x 2 + bx + 2 ( a ≠ 0 ) 经过点 A ( - 2 , - 4 ) 和点 C ( 2 , 0 ) ,与 y 轴交于点 D ,与 x 轴的另一交点为点 B .
(1)求抛物线的解析式;
(2)如图1,连接 BD ,在抛物线上是否存在点 P ,使得 ∠ PBC = 2 ∠ BDO ?若存在,请求出点 P 的坐标;若不存在,请说明理由;
(3)如图2,连接 AC ,交 y 轴于点 E ,点 M 是线段 AD 上的动点(不与点 A ,点 D 重合),将 ΔCME 沿 ME 所在直线翻折,得到 ΔFME ,当 ΔFME 与 ΔAME 重叠部分的面积是 ΔAMC 面积的 1 4 时,请直接写出线段 AM 的长.