粮仓的顶部是圆锥形,底部是圆柱,这个圆锥的底面周长为32m,母线长为7m,圆柱的高为8m,为防雨需要在粮仓顶部铺上油毡,如果不计油毡接缝的重合部分,那么共需多少油毡?如果只能在圆柱部分储存粮食,则此粮仓可储存多少粮食?
(1)解方程:;(2)
老王带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一 些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题. (1)老王自带的零钱是多少? (2)试求降价前y与x之间的关系式. (3)由表达式你能求出降价前每千克的土豆价格是多少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F. (1)求证:OE是CD的垂直平分线. (2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论.
观察下列各式及其验算过程: 验证: 验证: (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证; (2)针对上述各式反映的规律,写出用(为任意自然数,且)表示的等式,并证明
已知函数y=(2m+1)x+m-3 (1)若函数图象经过原点,求m的值; (2)若函数的图象平行直线y=3x-3,求m的值; (3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.