如图,已知四棱锥P—ABCD中,底面ABCD是直角梯长,AB//CD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1。(1)求证:BC⊥平面PAC;(2)若M是PC的中点,求三棱锥M—ACD的体积。
(本小题满分12分) 如图,四棱锥中,底面是边长为2的正方形,,且,为中点. (1)求证:平面; (2)求二面角的余弦值.
(本小题满分10分) 命题函数是增函数.命题成立,若为真命题,求实数的取值范围.
设函数(a>0,b,cÎR),曲线在点P(0,f (0))处的切线方程为. (Ⅰ)试确定b、c的值; (Ⅱ)是否存在实数a使得过点(0,2)可作曲线的三条不同切线,若存在,求出a的取值范围;若不存在,请说明理由.
已知椭圆的两焦点是,离心率. (Ⅰ)求椭圆的方程; (Ⅱ)若在椭圆上,且,求DPF1F2的面积.
(本题满分12分) 如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点. (Ⅰ)求证:PB平面ADMN; (Ⅱ)求四棱锥P-ADMN的体积.