已知函数图像上的点处的切线方程为.(1)若函数在时有极值,求的表达式;(2)函数在区间上单调递增,求实数的取值范围.
已知函数其中常数(1)当时,求函数的单调递增区间;(2)当时,给出两类直线:与,其中为常数,判断这两类直线中是否存在的切线,若存在,求出相应的或的值,若不存在,说明理由.(3)设定义在上的函数在点处的切线方程为,当若在内恒成立,则称为函数的“类对称点”,当时,试问是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.
已知中心在原点的椭圆的一个焦点为为椭圆上一点,的面积为(1)求椭圆的方程;(2)是否存在平行于的直线,使得直线与椭圆相交于两点,且以线段为有经的圆恰好经过原点?若存在,求出的方程,若不存在,说明理由.
已知函数(1)试确定的范围,使得函数在上是单调函数;(2)求在上的最值.
如图,已知直角梯形所在的平面垂直于平面(1)的中点为,求证∥面(2)求平面与平面所成的锐二面角的余弦值
已知等差数列的公差大于0,且是方程的两根,数列的前项和为,且(1)求数列、的通项公式;(2)若,求数列的前项和