已知直线分别与轴、轴交于点、,抛物线经过点、.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线,点关于直线的对称点为,若点在轴的正半轴上,且四边形为梯形.① 求点的坐标;② 将此抛物线向右平移,平移后抛物线的顶点为,其对称轴与直线交于点,若tan =,求四边形的面积.
已知梯形ABCD,请使用无刻度直尺画图. (1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形; (2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.
如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒. (1)当t= 时,△PQR的边QR经过点B; (2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式; (3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.
如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上, (1)k的值为 ; (2)当m=3,求直线AM的解析式; (3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.
如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为D,直线AC交⊙C于点E、F,且CF=AC. (1)求∠ACB的度数; (2)若AC=8,求△ABF的面积.
用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米. (1)求y关于x的函数关系式; (2)当x为何值时,围成的养鸡场面积为60平方米? (3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.