从全校参加数学竞赛的学生的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成5组,绘成频率分布直方图,图中从左到右各小组的小长方形的高之比为1:3:6:4:2,最右边一组的频数是6,请结合直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)列出频率分布表;(3)成绩落在哪个范围内的人数最多?并求出该小组的频数,频率;(4)估计这次竞赛中,成绩高于60分的学生占总人数的百分比.
(本小题满分8分)在中,,,.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分8分)在长方体中,底面是边长为2的正方形,.(Ⅰ)指出二面角的平面角,并求出它的正切值;(Ⅱ)求与所成的角.
个正数排成如下表所示的行列: 其中每一行成等差数列,每一列成等比数列,且各列的公比相等,若,,。 ① 求; ② 记,求关于的表达式; ③ 对于②的,求证:; ④ 若集合是集合的真子集,则称由的判断到的判断为对的估计的一次 优化。请你优化③中的结果。
某地预计从年初开始的前个月内,对某种商品的需求总量(万件)与月份的近似关系为。①写出今年第个月的需求量(万件)与月份的函数关系,并求出哪些个月份的需求量超过1.4万件;②如果将该商品每月初都投放市场万件,要保证每个月都能满足供应,则至少为多少万件?
若,其中,记函数①若图像中相邻两条对称轴间的距离不小于,求的取值范围;②若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图像变换得到的图像。