化简求值:(1)已知,求; (2) .
已知椭圆的右焦点,长轴的左、右端点分别为,且.(1)求椭圆的方程;(2)过焦点斜率为()的直线交椭圆于两点,弦的垂直平分线与轴相交于点. 试问椭圆上是否存在点使得四边形为菱形?若存在,求的值;若不存在,请说明理由.
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.(1)求关于的函数关系式;(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
已知几何体由正方体和直三棱柱组成,其三视图和直观图(单位:cm)如图所示.设两条异面直线和所成的角为,求的值.
设各项都是正整数的无穷数列满足:对任意,有.记.(1)若数列是首项,公比的等比数列,求数列的通项公式;(2)若,证明:;(3)若数列的首项,,是公差为1的等差数列.记,,问:使成立的最小正整数是否存在?并说明理由.
设函数,.(1)解方程:;(2)令,,求证:(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.