某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。 (I)求应从小学、中学、大学中分别抽取的学校数目。 (II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,   (1)列出所有可能的抽取结果;   (2)求抽取的2所学校均为小学的概率。
已知椭圆C的中心在坐标原点,短轴长为4,且有一个焦点与抛物线的焦点重合. (Ⅰ)求椭圆C的方程; (Ⅱ)已知经过定点M(2,0)且斜率不为0的直线交椭圆C于A、B两点,试问在x轴上是否另存在一个定点P使得始终平分?若存在求出点坐标;若不存在请说明理由.
如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E为棱SB上任一点. (Ⅰ)求证:无论E点取在何处恒有; (Ⅱ)设,当平面EDC平面SBC时,求的值; (Ⅲ)在(Ⅱ)的条件下求二面角的大小.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (I)求张同学至少取到1道乙类题的概率; (II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用表示张同学答对题的个数,求的分布列和数学期望.
在中,角A,B,C所对的边分别为. (Ⅰ)叙述并证明正弦定理; (Ⅱ)设,,求的值.
已知在等比数列中,,且是和的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足,求的前项和.