在1,2,3…,9,这9个自然数中,任取3个数.(Ⅰ)求这3个数中,恰有一个是偶数的概率;(Ⅱ)记X为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3,此时X的值是2)。求随机变量X的分布列及其数学期望EX.
已知复数在复平面内表示的点为A,实数m取什么值时, (1)复数z为实数? (2)复数z为纯虚数? (3)点A位于复平面的第三象限?
已知二次函数满足条件: ①;②的最小值为。 (1)求函数的解析式; (2)设数列的前项积为,且,求数列的通项公式; (3)在(2)的条件下,若是与的等差中项,试问数列中第几项的值最小?求出这个最小值。
如图,有两条相交成角的直路,交点为,甲、乙分别在上,起初甲离点,乙离点,后来甲沿的方向,乙沿的方向,同时以的速度步行。 (1)起初两人的距离是多少? (2)小时后两人的距离是多少? (3)什么时候两人的距离最短,并求出最短距离。
已知数列的前项和,设数列满足, (1)求数列的通项公式; (2)求数列的前项和; (3)设,求.
在中,角所对的边分别是,且 (1)求角; (2)若,试求的最小值.