设数列是等差数列,数列的前n项和,若,,(1)求数列的通项公式.(2)求数列的前n 项和.
已知等差数列的前三项依次为、4、,前项和为,且.(1)求及的值;(2)设数列的通项,证明数列是等差数列,并求其前项和.
已知二次函数.(1)若对任意、,且,都有,求证:关于的方程有两个不相等的实数根且必有一个根属于;(2)若关于的方程在上的根为,且,设函数的图象的对称轴方程为,求证:.
设函数.(1)若,对一切恒成立,求的最大值;(2)设,且、是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.
如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,,现要将此铁皮剪出一个等腰三角形,其底边.(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.
已知函数,,.(1)求证:函数在上单调递增;(2)若函数有四个零点,求的取值范围.