(本小题满分14分)已知向量,.(I) 若,共线,求的值;(II)当时,求与夹角的余弦值.
已知椭圆,右焦点为,求连接和椭圆上任意一点的线段的中点的轨迹方程.
已知是过点的两条互相垂直的直线,且与双曲线各两个交点,分别为和.(1)求的斜率的取值范围; (2)若,求的方程.
已知抛物线的焦点为,以为圆心,长为半径,在轴上方的半圆交抛物线于不同的两点,,是的中点.⑴求的值;⑵是否存在这样的值,使,,成等差数列?
已知直线过坐标原点,抛物线的顶点在原点,焦点在轴正半轴上,若点和点关于的对称点都在上,求直线和抛物线的方程.
如图,是抛物线上上的一点,动弦分别交轴于两点,且.(1) 若为定点,证明:直线的斜率为定值;(2) 若为动点,且,求的重心的轨迹方程.