(本小题满分15分)(Ⅰ)如图1,是平面内的三个点,且与不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:.(Ⅱ)如图2,设为的重心,过点且与、(或其延长线)分别交于点,若,,试探究:的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.
(本小题13分) 如图所示, PQ为平面的交线, 已知二面角为直二面角, , ∠BAP=45°. (1)证明: BC⊥PQ; (2)设点C在平面内的射影为点O, 当k取何值时, O在平面ABC内的射影G恰好为△ABC的重心?(3)当时, 求二面角B-AC-P的大小.
(本小题12分)已知: 以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A, 与y轴交于点O, B, 其中O为原点. (1)求证:△OAB的面积为定值;(2)设直线y = –2x+4与圆C交于点M, N, 若OM = ON, 求圆C的方程.
(本小题12分) 如图,四棱锥P-ABCD的底面是正方形, PA⊥底面ABCD, PA=2, ∠PDA="45°," 点E、F分别为棱AB、PD的中点. (1)求证: AF∥平面PCE; (2)求证: 平面PCE⊥平面PCD; (3)求AF与平面PCB所成的角的大小.
(本小题12分) 已知两条直线l1: ax-by+4=0和l2: (a-1)x+y+b="0," 求满足下列条件的a, b的值.(1)l1⊥l2, 且l1过点(-3, -1);(2)l1∥l2, 且坐标原点到这两条直线的距离相等.
(本小题12分) 在△ABC中, 角A、B、C所对的边分别为a、b、c, 且tanA=, sinB=.(1)求tanC的值; (2)若△ABC最长的边为1, 求b.