(本小题满分15分)(Ⅰ)如图1,是平面内的三个点,且与不重合,是平面内任意一点,若点在直线上,试证明:存在实数,使得:.(Ⅱ)如图2,设为的重心,过点且与、(或其延长线)分别交于点,若,,试探究:的值是否为定值,若为定值,求出这个定值;若不是定值,请说明理由.
如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B1的中点. (1)证明:面⊥平面A1B1BA;(2)证明:;(3)求棱柱ABC—A1B1C1被平面分成两部分的体积比.
在数列中, (为常数,),且成公比不等于1的等比数列.(1) 求c的值;(2)设bn=,求数列的前n项和Sn.
在平面直角坐标系下,已知A(2,0),B(0,2),.(1)求的最小正周期;(2)求的单调递增区间.
已知命题在[-1,1]上有解,命题q:只有一个实数x满足:(I)若的图象必定过两定点,试写出这两定点的坐标 (只需填写出两点坐标即可);(II)若命题“p或q”为假命题,求实数a的取值范围.
(本小题满分14分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(I)将一个星期的商品销售利润表示成的函数;(II)如何定价才能使一个星期的商品销售利润最大?