2012年6月5日是“世界环境日”,南宁市某校举行了“绿色家园”演讲比赛,赛后整理参赛同学的成绩,制作成直方图(如图).(1)分数段在-----范围的人数最多;(2)全校共有多少人参加比赛?(3)学校决定选派本次比赛成绩最好的3人参加南宁市中学生环保演讲决赛,并为参赛选手准备了红、蓝、白颜色的上衣各1件和2条白色、1条蓝色的裤子.请用“列表法”或“树形图法”表示上衣和裤子搭配的所有可能出现的结果,并求出上衣和能搭配成同一种颜色的概率.
“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.
(1)求参与该游戏可免费得到景点吉祥物的频率;
(2)请你估计纸箱中白球的数量接近多少?
人教版初中数学教科书八年级上册第 35 - 36 页告诉我们作一个三角形与已知三角形全等的方法:
已知: ΔABC .
求作:△ A ' B ' C ' ,使得△ A ' B ' C ' ≅ ΔABC .
作法:如图.
(1)画 B ' C ' = BC ;
(2)分别以点 B ' , C ' 为圆心,线段 AB , AC 长为半径画弧,两弧相交于点 A ' ;
(3)连接线段 A ' B ' , A ' C ' ,则△ A ' B ' C ' 即为所求作的三角形.
请你根据以上材料完成下列问题:
(1)完成下面证明过程(将正确答案填在相应的空上) :
证明:由作图可知,在△ A ' B ' C ' 和 ΔABC 中,
B ' C ' = BC A ' B ' = ( ) A ' C ' = ( )
∴ △ A ' B ' C ' ≅ .
(2)这种作一个三角形与已知三角形全等的方法的依据是 .(填序号)
① AAS
② ASA
③ SAS
④ SSS
先化简,再求值: ( x - 3 ) 2 + ( x + 3 ) ( x - 3 ) + 2 x ( 2 - x ) ,其中 x = - 1 2 .
计算: | - 2 | - 2 sin 45 ° + ( 1 - 3 ) 0 + 2 × 8 .
如图,已知二次函数 y = a x 2 + bx + c 的图象经过点 C ( 2 , - 3 ) ,且与 x 轴交于原点及点 B ( 8 , 0 ) .
(1)求二次函数的表达式;
(2)求顶点 A 的坐标及直线 AB 的表达式;
(3)判断 ΔABO 的形状,试说明理由;
(4)若点 P 为 ⊙ O 上的动点,且 ⊙ O 的半径为 2 2 ,一动点 E 从点 A 出发,以每秒2个单位长度的速度沿线段 AP 匀速运动到点 P ,再以每秒1个单位长度的速度沿线段 PB 匀速运动到点 B 后停止运动,求点 E 的运动时间 t 的最小值.