如图,在平面直角坐标系xoy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相较于点N.求M,N的坐标;在矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN的重叠部分的面积为S.移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束)。直接写出S与自变量t之间的函数关系式(不需要给出解答过程);在(2)的条件下,当t为何值时,S的值最大?并求出最大值.
解方程:(1);(2)
计算:(1);(2)
如图,在平面直角坐标系中有三个点A(-3,2)、B(﹣5,1)、C(-2,0),P(a,b)是△ABC的边AC上一点,△ABC经平移后得到△A1B1C1,点P的对应点为P1(a+6,b+2). (1)画出平移后的△A1B1C1,写出点A1、B1\ C1的坐标; (2)若以A、B、C、D为顶点的四边形为平行四边形,直接写出D点的坐标; (3)顺次连接A、C、C1、.A1求出四边形ACC1 A1 的面积.
如图,AD∥BC,EF∥AD, CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.
在某城市中,体育场在火车站以西再往北处,华侨宾馆在火车站以西再往南处,百佳超市在火车站以南再往东,请建立适当的平面直角坐标系,分别写出各地的坐标.(提示:比例尺:一格代表1000m)