(本小题满分16分)已知数列是各项均为正数的等差数列.(1)若,且,,成等比数列,求数列的通项公式;(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求实数的最小值;(3)若数列中有两项可以表示为某个整数的不同次幂,求证:数列 中存在无穷多项构成等比数列.
(本小题满分12分) 如图,四棱锥P—ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,E、F分别为CD、PB的中点. (1)求证:EF⊥平面PAB; (2)设求直线AC与平面AEF所成角的正弦值.
(本小题满分12分) 袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有m个,3号球有n个.从袋中依次摸出2个球,已知在第一次摸出3号球的前提下,再摸出一个2号球的概率是 (1)求m,n的值; (2)从袋中任意摸出2个球,设得到小球的编号数之和为,求随机变量的分布列和数学期望E.
(本小题满分12分) 已知向量 (1)若求x的值; (2)函数,若恒成立,求实数c的取值范围.
在平面直角坐标系中,已知向量(),,动点的轨迹为T. (1)求轨迹T的方程,并说明该方程表示的曲线的形状; (2)当时,已知、,试探究是否存在这样的点:是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积?若存在,求出点Q的坐标,若不存在,说明理由.
已知曲线:,数列的首项,且当时,点恒在曲线上,数列满足. (1)试判断数列是否是等差数列?并说明理由; (2)求数列和的通项公式; (3)设数列满足,试比较数列的前n项和与2的大小.