(本小题满分13分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右:(Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;(Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
(本小题满分12分)袋中有分别写着“团团”和“圆圆”的两种玩具共7个,且形状完全相同,从中任取2个玩具都是“圆圆”的概率为,A、B两人不放回从袋中轮流摸取一个玩具,A先取,B后取,然后A再取,……直到两人中有一人取到“圆圆”时即停止游戏,每个玩具在每一次被取出的机会是均等的,用表示游戏终止时取玩具的次数。(1)求袋中“圆圆”的个数;(2)求3的概率。
(本小题满分12分) 设函数 (1)若函数在内没有极值点,求的取值范围。 (2)若对任意的,不等式上恒成立,求实数的取值范围。
(本小题满分12分)数列中, (1)求的通项公式;(2)设,求
(本小题满分10分) 已知若,且的图象相邻的对称轴间的距离等于 (1)求的值;(2)在中,分别是角A,B,C的对边,,且,求的最小值。
如图所示,平面ABC,CE//PA,PA=2CE=2。 (1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。