(本小题满分12分)为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一支队的概率;(Ⅱ)中国女排奋力拼搏,战胜韩国队获得冠军.若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量的分布列,及数学期望.
(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=. (Ⅰ)求点S的坐标;(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;①判断直线MN的斜率是否为定值,并说明理由;②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.
(本小题满分12分)在四棱锥中,,,平面,为的中点,.(Ⅰ)求四棱锥的体积;(Ⅱ)若为的中点,求证:平面平面;(Ⅲ)求二面角的大小。.
(本小题满分12分)盒子里装有6件包装完全相同的产品,已知其中有2件次品,其余4件是合格品。为了找到2件次品,只好将盒子里的这些产品包装随机打开检查,直到两件次品被全部检查或推断出来为止。记表示将两件次品被全部检查或推断出来所需检查次数。(I)求两件次品被全部检查或推断出来所需检查次数恰为4次的概率;(II)求的分布列和数学期望。
(本小题满分12分)设数列的前项和为.已知,,.(Ⅰ)设,求数列的通项公式;(Ⅱ)若,,求的取值范围.
(本小题满分10分)已知向量:,函数,若相邻两对称轴间的距离为(Ⅰ)求的值,并求的最大值及相应x的集合;(Ⅱ)在△ABC中,分别是A,B,C所对的边,△ABC的面积,求边的长。