(本小题满分13分)如图,已知抛物线,过点作抛物线的弦,.(Ⅰ)若,证明直线过定点,并求出定点的坐标;(Ⅱ)假设直线过点,请问是否存在以为底边的等腰三角形? 若存在,求出的个数?如果不存在,请说明理由.
(本小题满分12分)各项均不相等的等差数列的前四项的和为,且成等比数列.(1)求数列的通项公式与前n项和;(2)记为数列的前n项和,求
(本小题满分12分)已知双曲线的离心率为,点是双曲线的一个顶点.(1)求双曲线的方程;(2)经过的双曲线右焦点作倾斜角为30°直线,直线与双曲线交于不同的两点,求的长.
(本小题共12分)△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为.(1)若,求角A,B,C的大小;(2 )若a=2,且,求边c的取值范围.
(本小题满分10分)设p:实数满足(其中),q:实数x满足(1)若,且p∧q为真,求实数的取值范围;(2)若p是q的必要不充分条件,求实数的取值范围.
在数列中,,当时,满足.(Ⅰ)求证:数列是等差数列,并求数列的通项公式;(Ⅱ)令,数列的前项和为,求使得对所有都成立的实数的取值范围.