在数列中,,当时,满足.(Ⅰ)求证:数列是等差数列,并求数列的通项公式;(Ⅱ)令,数列的前项和为,求使得对所有都成立的实数的取值范围.
已知,(1)求函数 ()的单调递增区间;(2)设的内角满足,而,求边上的高长的最大值。
(本题12分)一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
其中=1,2,3,4,5, 6,7.(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;(2)求回归直线方程;(结果四舍五入后保留到小数点后两位)(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)(参考公式:)
在等比数列中,,且,是和的等差中项.(1)求数列的通项公式;(2)若数列满足(),求数列的前项和.
下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300)第三步 输出税款y, 结束。请写出该算法的程序框图和程序。(注意:程序框图与程序必须对应)
某班同学利用劳动节进行社会实践,对岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求、、的值;(2)从年龄段在的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动,其中每组各选多少人?