已知椭圆长轴上有一点到两个焦点之间的距离分别为:3+2,3-2(1)求椭圆的方程;(2)如果直线x=t(teR)与椭圆相交于A,B,若C(-3,0),D(3,0),证明直线CA与直线BD的交点K必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l(与x轴不垂直)与椭圆交于M,N两点,与y轴交于点R,、若,求证:为定值.
在中,角、、对的边分别为、、,且(Ⅰ)求的值;(Ⅱ)若,求的面积.
已知点和点.(Ⅰ)求过点且与直线垂直的直线的一般式方程;(Ⅱ)求以线段为直径的圆的标准方程.
已知几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.(Ⅰ)求此几何体的体积的大小;(Ⅱ)求异面直线DE与AB所成角的余弦值;(Ⅲ)求二面角A-ED-B的正弦值.
两仓库分别有编织袋50万个和30万个,由于抗洪抢险的需要,现需调运40万个到甲地,20万个到乙地.已知从仓库调运到甲、乙两地的运费分别为120元/万个、180元/万个;从仓库调运到甲、乙两地的运费分别为100元/万个、150元/万个.问如何调运,能使总运费最小?总运费的最小值是多少?
已知直线方程为,其中(1)求证:直线恒过定点;(2)当变化时,求点到直线的距离的最大值;(3)若直线分别与轴、轴的负半轴交于两点,求面积的最小值及此时的直线方程.