如图,过点作抛物线 的切线,切点A在第二象限.(1)求切点A的纵坐标;(2)若离心率为的椭圆恰好经过切点A,设切线交椭圆的另一点为B,记切线,OA,OB的斜率分别为,求椭圆方程.
已知椭圆的左焦点F为圆x2+y2+2x=0的圆心,且椭圆上的点到点F的距离最小值为.(Ⅰ)+y2=1;(Ⅱ)已知经过点F的动直线l与椭圆交于不同的两点A、B,点M(),证明:为定值.
已知△ABC中,角A,B,C所对的边分别是a,b,c,且2(a2+b2﹣c2)=3ab;(1)求;(2)若c=2,求△ABC面积的最大值.
已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an﹣3.(1)求数列{an}的通项公式;(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
设函数f(x)=ax2+(b﹣2)x+3(a≠0)(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;(2)若f(1)=2,a>0,b>0求+的最小值.
已知命题p:“存在”,命题q:“曲线表示焦点在x轴上的椭圆”,命题s:“曲线表示双曲线”(1)若“p且q”是真命题,求m的取值范围;(2)若q是s的必要不充分条件,求t的取值范围.