(本大题满分14分)已知中心在原点,顶点A1、A2在x轴上,其渐近线方程是,双曲线过点(1)求双曲线方程(2)动直线经过的重心G,与双曲线交于不同的两点M、N,问:是否存在直线,使G平分线段MN,证明你的结论
一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.
已知锐角中内角、、所对边的边长分别为、、,满足,且. (Ⅰ)求角的值; (Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
已知函数,. (Ⅰ)若恒成立,求实数的值; (Ⅱ)设有两个极值点、(),求实数的取值范围,并证明.
设分别为直角坐标系中与轴、轴正半轴同方向的单位向量,若向量且. (Ⅰ)求点的轨迹的方程; (Ⅱ)设抛物线的顶点为,焦点为.直线过点与曲线交于两点,是否存在这样的直线,使得以为直径的圆过点,若存在,求出直线方程;若不存在,请说明理由?
在四棱锥中,,,平面,,为的中点。 (Ⅰ)求证:平面; (Ⅱ)平面内是否存在一点,使平面?若存在,确定点的位置;若不存在,请说明理由。