设函数在区间上的最小值为令.(Ⅰ)求;(Ⅱ)试求所有的正整数,使得为数列中的项;(Ⅲ)求证:
已知关于的函数,其导函数为.记函数在区间上的最大值为. (1) 如果函数在处有极值,试确定的值; (2) 若,证明对任意的,都有; (3) 若对任意的恒成立,试求的最大值.
椭圆的离心率为,其左焦点到点的距离为. (1) 求椭圆的标准方程; (2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
已知数列中,,前项和. (1) 求数列的通项公式; (2) 设数列的前项和为,是否存在实数,使得对一切正整数都 成立?若存在,求出的最小值;若不存在,请说明理由.
如图,在直三棱柱中,平面侧面,且 (1) 求证:; (2) 若直线与平面所成的角为,求锐二面角的大小。
去年2月29日,我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.惠州市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,由此得到样本的空气质量指数频率分布直方图,如图. (1) 求的值; (2) 根据样本数据,试估计这一年度的空气质量指数的平均值;(注:设样本数据第组的频率为,第组区间的中点值为,则样本数据的平均值为.) (3) 如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.