已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为1.(Ⅰ)求椭圆的方程;(Ⅱ)设点在抛物线:上,在点处的切线与交于点.线段的中点与的中点的横坐标相等时,求的最小值.
在锐角中,分别是内角所对边长,且满足。 求角的大小; 若,求
(本题14分)已知函数在处取得极值,且在处的切线的斜率为1。 (Ⅰ)求的值及的单调减区间; (Ⅱ)设>0,>0,,求证:。
(本题15分)已知点是椭圆E:()上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴. (Ⅰ)求椭圆E的方程; (Ⅱ)设A、B是椭圆E上两个动点,().求证:直线AB的斜率为定值; (Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
(本题15分)如图,在四棱锥中,底面,,,,,是的中点。 (Ⅰ)证明:; (Ⅱ)证明:平面; (Ⅲ)求二面角的正切值.
(本题14分)口袋内有()个大小相同的球,其中有3个红球和个白球.已知从 口袋中随机取出一个球是红球的概率是,且。若有放回地从口袋中连续地取四次球(每次只取一个球),在四次取球中恰好取到两次红球的概率大于。 (Ⅰ)求和; (Ⅱ)不放回地从口袋中取球(每次只取一个球),取到白球时即停止取球,记为第一次取到白球时的取球次数,求的分布列和期望。