已知平面上的线段 l 及点 P ,在 l 上任取一点 Q ,线段 P Q 长度的最小值称为点 P 到线段 l 的距离,记作 d P , l . ⑴ 求点 P ( 1 , 1 ) 到线段 l : x - y - 3 = 0 ( 3 ≤ x ≤ 5 ) 的距离 d P , l ; ⑵ 设 l 是长为2的线段,求点集 D = P | d ( P , l ) ≤ 1 所表示图形的面积; ⑶ 写出到两条线段 l 1 , l 2 距离相等的点的集合 Ω = P | d ( P , l 1 ) = d ( P , l 2 ) ,其中 l 1 = A B , l 2 = C D , A , B , C , D 是下列三组点中的一组.对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。 ① A ( 1 , 3 ) , B ( 1 , 0 ) , ( - 1 , 3 ) , D ( - 1 , 0 ) . ② A ( 1 , 3 ) , B ( 1 , 0 ) , ( - 1 , 3 ) , D ( - 1 , - 2 ) . ③ A ( 0 , 1 ) , B ( 0 , 0 ) , ( 0 , 0 ) , D ( 2 , 0 ) .
中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值
已知函数 (1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性
已知数列中,,,数列满足:。(1)求 ;(2)求证: ;(3)求数列的通项公式;(4)求证:
四边形中, (1)若,试求与满足的关系式;(2)满足(1)的同时又有,求的值及四边形的面积。
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?