已知平面上的线段 l 及点 P ,在 l 上任取一点 Q ,线段 P Q 长度的最小值称为点 P 到线段 l 的距离,记作 d P , l . ⑴ 求点 P ( 1 , 1 ) 到线段 l : x - y - 3 = 0 ( 3 ≤ x ≤ 5 ) 的距离 d P , l ; ⑵ 设 l 是长为2的线段,求点集 D = P | d ( P , l ) ≤ 1 所表示图形的面积; ⑶ 写出到两条线段 l 1 , l 2 距离相等的点的集合 Ω = P | d ( P , l 1 ) = d ( P , l 2 ) ,其中 l 1 = A B , l 2 = C D , A , B , C , D 是下列三组点中的一组.对于下列三组点只需选做一种,满分分别是①2分,②6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。 ① A ( 1 , 3 ) , B ( 1 , 0 ) , ( - 1 , 3 ) , D ( - 1 , 0 ) . ② A ( 1 , 3 ) , B ( 1 , 0 ) , ( - 1 , 3 ) , D ( - 1 , - 2 ) . ③ A ( 0 , 1 ) , B ( 0 , 0 ) , ( 0 , 0 ) , D ( 2 , 0 ) .
设函数其中b为常数(1)当时,判断函数在定义域上的单调性(2)若函数有极值点,求b的取值范围,以及的极值点
设函数的定义域、值域均为的反函数为,且对任意的,均有,定义数列(1)求证:(2)设求证(3)是否存在常数A、B同时满足: , 如果存在,求出A、B的值,如果不存在,说明理由。
已知椭圆的右焦点为,右准线与轴交于点,若椭圆的离心率(1)求的值(2)若过的直线与椭圆交于两点,且共线(为坐标原点)求的夹角
一个小正方体的六个面,三个面上标以数字0,两个面上标以数学1,一个面上标以数字2(1)甲、乙两人各抛掷一次,谁的点数大谁就胜,求甲获胜的概率(2)将这个小正方体抛掷两次,用随机变量表示向上点数之积,求随机变量的概率分布列及数学期望
垂直于正方形所在的平面,,异面直线、所成的角的余弦为(1)求的长;(2)在平面内求一点(指出其位置),使