已知数列 { a n } 和 { b n } 的通项公式分别为 a n = 3 n + 6 , b n = 2 n + 7 ( n ∈ N * ),将集合 { x | x = a n , n ∈ N * } ∪ { x | x = b n , n ∈ N * } 中的元素从小到大依次排列,构成数列 c 1 , c 2 , c 3 , ⋯ , c n , ⋯ 。 ⑴ 求 c 1 , c 2 , c 3 , c 4 ; ⑵ 求证:在数列 { c n } 中、但不在数列 { b n } 中的项恰为 a 2 , a 4 , ⋯ , a 2 n , ⋯ ; ⑶ 求数列 { c n } 的通项公式。
已知,且, 求:(1); (2); (3)的值。
已知函数,求: (1)求函数的最小正周期; (2)求函数的最大值、最小值及取得最大值、最小值的 (3)求函数的单调递增区间
(1)化简: (2)证明:
已知,求,
已知椭圆G:的右焦点F为,G上的点到点F的最大距离为,斜率为1的直线与椭圆G交与、两点,以AB为底边作等腰三角形,顶点为P(-3,2) (1)求椭圆G的方程; (2)求的面积。