已知等比数列 { a n } 中, a 1 = 1 3 , q = 1 3 , (1) S n 为数列 { a n } 前 n 项的和,证明: S n = 1 - a n 2 . (2)设 b n = log 3 a 1 + log 3 a 2 + . . . + log 3 a n ,求数列 { b n } 的通项公式;
在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.(1)求证:AF∥平面BCE;(2)求证:平面BCE⊥平面CDE.
直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)
如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.(1)求证:BC1∥平面A1CD;(2)求三棱锥D-A1B1C的体积.
如图,正方体ABCD-A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.
已知空间四边形ABCD中,AB=CD=3,E、F分别是BC、AD上的点,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.