(本小题13分)已知定点及椭圆,过点的动直线与该椭圆相交于两点.(1)若线段中点的横坐标是,求直线的方程;(2)在轴上是否存在点,使为常数?若存在,求出点的坐标;如果不存在,请说明理由.
已知的展开式中前三项的系数成等差数列. (Ⅰ)求n的值; (Ⅱ)求展开式中系数最大的项.
由0,1,2,3,4,5这六个数字. (1)能组成多少个无重复数字的四位数? (2)能组成多少个无重复数字的四位偶数? (3)能组成多少个无重复数字且被25个整除的四位数? (4)组成无重复数字的四位数中比4032大的数有多少个?
用秦九韶算法求多项式当时的值。
把“五进制”数转化为“十进制”数,再把它转化为“八进制”数。
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点,且(为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:()相切于,且与轨迹E只有一个公共点,当为何值时,取得最大值?并求最大值.