一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2, 3,4.(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.若以作为点P的坐标,求点P落在区域内的概率.
已知函数. (1)讨论函数在上的单调性; (2)当时,曲线上总存在相异两点,,,使得曲线在、处的切线互相平行,求证:.
设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=. (1)求C1的方程; (2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示: (1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率; (2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.
在如图的几何体中,四边形为正方形,四边形为等腰梯形,∥,,,. (1)求证:平面; (2)求直线与平面所成角的正弦值.
数列的前项和为,且是和的等差中项,等差数列满足,. (1)求数列、的通项公式; (2)设,数列的前项和为,证明:.