一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2, 3,4.(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为.若以作为点P的坐标,求点P落在区域内的概率.
((本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.(Ⅰ)求椭圆的方程;(Ⅱ)设直线过且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.
(本小题满分12分)设,求直线AD与平面的夹角。
已知命题若是的充分不必要条件,求的取值范围
(本小题分)设是数列的前项和,点在直线上.(Ⅰ)求数列的通项公式; (Ⅱ)记,数列的前项和为,求使的的最小值;(Ⅲ)设正数数列满足,求数列中的最大项.
(本小题满分 分)已知直线与抛物线相切于点,且与轴交于点,定点的坐标为.(Ⅰ)若动点满足,求点的轨迹;(Ⅱ)若过点的直线(斜率不等于零)与(I)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围.