(本小题满分12分)甲,乙两人约定上午7:00至8:00之间到某站乘公共汽车,在这段时间内有2班公共汽车,它们开车的时刻分别是7:30和8:00,甲、乙两人约定,见车就乘,则甲、乙同乘一车的概率为(假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在7时到8时的任何时刻到达车站是等可能的).
已知函数. (1)求的单调递增区间; (2)当时,求的值域.
已知函数,(其中是自然对数的底数)。 (1)若,求函数在上的最大值; (2)若,关于的方程有且仅有一个根,求实数的取值范围; (3)若对任意的,,不等式都成立,求实数的取值范围。
某市近郊有一块大约500米×500米的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个总面积为3000平方米矩形场地,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米. (1)分别用表示和的函数关系式,并给出定义域; (2)怎样设计能使取得最大值,并求出最大值.
四棱锥中,底面是边长为8的菱形,,若, 平面⊥平面,、分别为、的中点。 (1)求证:; (2)求证:⊥; (3)求三棱锥的体积.
已知向量,,函数。 (1)求函数的对称中心; (2)在中,分别是角的对边,且,,且,求的值.