如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:①线段AD与EC的长度相等吗?请说明理由.②锐角的度数是否改变?若不变,请求出的度数;若改变,请说明理由. (注:等边三角形的三条边都相等,三个角都是60°)
计算:
在ΔABC中,D为BC的中点,E为AC上的任意一点,BE交AD于点O.某学生在研究这一问题时,发现了如下事实: 如图1,当时,有; 如图2,当时,有; 如图3,当时,有;在图4中,当时, 参照上述研究的结论,请你猜想用n表示AO∶AD的一般结论,并给出证明.
一条河的两岸有一段是平行的.在河的这一岸每相距5米在一棵树,在河的对岸每相距50米在一根电线杆.在这岸离开岸边25米处看对岸,看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河宽.
如图,菱形ABCD中,CF⊥AD,垂足为E,交BD的延长线于F.求证:AO2=BO•OF.
如图,正方形ABCD中,E是CD的中点,EF⊥AE.求证:(1)EF平分∠AFC;(2)BF=3FC.