如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:①线段AD与EC的长度相等吗?请说明理由.②锐角的度数是否改变?若不变,请求出的度数;若改变,请说明理由. (注:等边三角形的三条边都相等,三个角都是60°)
(满分8分)在直角坐标系xOy中,直线l过(1,3)和(3,1)两点,且与x轴,y轴分别交于A,B两点.(1)求直线l的函数关系式;(2)求△AOB的面积.
(满分8分)受气候等因素的影响,今年某些农产品的价格有所上涨. 张大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?
(每小题6分,共12分)(1)如图,BD与CD分别平分∠ABC和∠ACB,已知∠BDC=,求∠A的度数。(2)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,求∠1的度数.
(每小题5分,共10分) 计算:(1)一个三角形底边的长是,高是。如果将底边增加2,高减少2,,为了使面积不变,那么和应满足什么关系?(2)已知等腰三角形的周长为20,若有一边长为4,,则另外两边的长分别是多少?
如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.