某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳 OB 的长为 3 m ,静止时,踏板到地面距离 BD 的长为 0 . 6 m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为 hm ,成人的“安全高度”为 2 m (计算结果精确到 0 . 1 m )
(1)当摆绳 OA 与 OB 成 45 ° 夹角时,恰为儿童的安全高度,则 h = m
(2)某成人在玩秋千时,摆绳 OC 与 OB 的最大夹角为 55 ° ,问此人是否安全?(参考数据: 2 ≈ 1 . 41 , sin 55 ° ≈ 0 . 82 , cos 55 ° ≈ 0 . 57 , tan 55 ° ≈ 1 . 43 )
如图,曲线是函数在第一象限内的图象,抛物线是函数的图象.点()在曲线上,且都是整数. (1)求出所有的点; (2)在中任取两点作直线,求所有不同直线的条数; (3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
某校为了解决学生停车难的问题,打算新建一个自行车车棚,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧所在圆的圆心为,半径为3米. (1)求的度数; (2)学校准备用某种材料制作车棚顶部,请你算一算,需该种材料多少平方米?(不考虑接缝等因素,结果精确到1平方米). (第2小题的参考数据:取3.14)
如图,已知抛物线与轴交于点. (1)平移该抛物线使其经过点和点(2,0),求平移后的抛物线解析式; (2)求该抛物线的对称轴与(1)中平移后的抛物线对称轴之间的距离.
已知,一次函数的图象与反比例函数的图象都经过点. (1)求的值及反比例函数的表达式; (2)判断点是否在该反比例函数的图象上,请说明理由.
已知抛物线. (1)通过配方,将抛物线的表达式写成的形式(要求写出配方过程); (2)求出抛物线的对称轴和顶点坐标.