按下列要求画图,并解答问题:(1) 如图,在△ABC中,取线段BC的中点D,过点D画射线AD.(2) 画BE⊥AD,CF⊥AD,垂足分别为点E、F.(3) BE和CF所在的直线有怎样的位置关系?
如图,利用一面墙(长度不限),用24m长的篱笆,怎样围成一个面积为70m2的长方形场地?能围成一个面积为80m2的长方形场地吗?为什么?
第一个布袋内装有红、白两种颜色的小球(大小形状相同)共4个,从袋内摸出1个球是红球的概率是0.5;第二个布袋内装有红、黑两种颜色的小球(大小形状相同)共4个,重复从袋内摸出1个球是红球的频率稳定在0.25。用列举法求:从两个布袋内各摸出一个球颜色不相同的概率。
如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用旋转的性质证明你的结论。(不用旋转性质证明的扣1分)
化简求值:已知,,是方程的两个根,求代数式的值。
矩形OABC在平面直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D. (1)求点D的坐标; (2)若抛物线经过A、D两点,试确定此抛物线的解析式; (3)设(2)中的抛物线的对称轴与直线AD交于点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.