设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2bsinA (1)求B的大小;(2) 若a=3,c=5,求b.
(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱,上,且AE==2.(Ⅰ)求证:⊥底面ABC;(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.
(本小题满分12分)在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.(Ⅰ)求该考场考生中“阅读与表达”科目中成 绩为的人数; (Ⅱ)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分; (Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.
(本小题满分12分)已知函数,(Ⅰ)求函数的周期及单调递增区间;(Ⅱ)在中,三内角,,的对边分别为,已知函数的图象经过点成等差数列,且,求的值.
(本小题满分l4分)已知函数.(Ⅰ)当a=0时,求 的极值;(Ⅱ)当a<0时,求 的单调区间;(Ⅲ)方程的根的个数能否达到3,若能请求出此时a的范围,若不能,请说明理由,
(本小题满分13分)如图,椭圆的离心率为,x轴被曲线 截得的线段长等于的短轴长,与y轴的交点为M,过坐标原点O的直线与相交于点A、B,直线MA,MB分别与相交于点D、E.(Ⅰ)求、的方程;(Ⅱ)求证:MAMB:(Ⅲ)记MAB,MDE的面积分别为,若 ,求的最小值.