某校从高二年级学生中随机抽取60名学生,将其会考的政治成绩(均为整数)分成六段: ,,…,后得到如下频率分布直方图.(Ⅰ)求图中的值(Ⅱ)根据频率分布直方图,估计该校高二年级学生政治成绩的平均分; (Ⅲ)用分层抽样的方法在80分以上(含 80分)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2人,求其中恰有1人的分数不低于90分的概率.
函数的定义域为,并满足以下条件:①对任意的;②对任意的,都有;③.1、求的值;2、求证:是上的单调递增函数;3、解关于的不等式:
如图,现有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,,且,设,绿地面积为.1、写出关于的函数关系式,并指出其定义域;2、当为何值时,绿地面积最大?
已知函数(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数的值域
计算:1、;2、已知,求的值.
已知全集,集合,,求,(.